
Maybe, it’s a Monad!

Paul Zhu

School of Software,

Tsinghua University

April 20, 2019

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 1 / 60

Tunight Tonight

1 Monads in Action

Motivation

Monad is an “Interface”

Monads for Probabilities

2 Monads, Categorically

Preliminary

Road to Monads

3 Beyond Monads: PL Today

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 2 / 60

Contents

1 Monads in Action

Motivation

Monad is an “Interface”

Monads for Probabilities

2 Monads, Categorically

Preliminary

Road to Monads

3 Beyond Monads: PL Today

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 3 / 60

Contents

1 Monads in Action

Motivation

Monad is an “Interface”

Monads for Probabilities

2 Monads, Categorically

Preliminary

Road to Monads

3 Beyond Monads: PL Today

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 4 / 60

Queries in Scala

Suppose we have a book database, represented as a list of books:

case class Book(title: String, authors: List[String])
val books: List[Book] = /* data */

To find all the books which have the word “Monad” in the title:

for (b <- books if b.title indexOf "Monad" >= 0) yield b.title

To find the names of all authors who have written at least two books

present in the database:

{ for { b1 <- books
b2 <- books
if b1.title < b2.title
a1 <- b1.authors
a2 <- b2.authors
if a1 == a2 } yield a1 }.distinct

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 5 / 60

For-Expressions are Just Functions

The Scala compiler expresses for-expressions in terms of map, flatMap
and a lazy variant of filter, namely withFilter. Translation scheme:

A for-expression with only one generator

for (x <- e1) yield e2

is translated to

e1.map(x => e2)

A for-expression with a filter f

for (x <- e1 if f; rest) yield e2

is translated to

for (x <- e1.withFilter(x => f); rest) yield e2

where rest denotes a (possibly empty) sequence of remaining

generators and filters.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 6 / 60

For-Expressions are Just Functions (Cont.)

A for-expression with multiple generators

for (x <- e1; y <- e2; rest) yield e3

is translated to

e1.flatMap(x => for (y <- e2; rest) yield e3)

Example: the following for-expression

for { i <- 1 until n
j <- 1 until i
if isPrime(i + j) } yield (i, j)

is translated into

(1 until n).flatMap { i =>
(1 until i).withFilter { j => isPrime(i+j) }

.map { j => (i, j) }
}

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 7 / 60

Flatmap, Map and then Flatten

> def neighbors(x: Int) = List(x - 1, x, x + 1)
> val xs = List(1, 2, 3)
> xs.flatMap(neighbors)
List(0, 1, 2, 1, 2, 3, 2, 3, 4)
> xs.map(neighbors).flatten
List(0, 1, 2, 1, 2, 3, 2, 3, 4)

In Haskell, this is called concatMap:

concatMap :: Foldable t => (a -> [b]) -> t a -> [b]

Interestingly, map can be defined in terms of concatMap:

map f = concatMap (\x -> [f x])

By swapping the first and second parameters of concatMap and

generalizing [b] as m b for some type constructor m, we obtain the

signature of the well-known “bind” function in monad:

(>>=) :: m a -> (a -> m b) -> m b

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 8 / 60

Secret of Box

Figure: Option type, from Rust community.

($) :: (a -> b) -> a -> b
fmap :: (a -> b) -> f a -> f b
(>>=) :: m a -> (a -> m b) -> m b

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 9 / 60

Contents

1 Monads in Action

Motivation

Monad is an “Interface”

Monads for Probabilities

2 Monads, Categorically

Preliminary

Road to Monads

3 Beyond Monads: PL Today

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 10 / 60

Monad, an “Interface”

In Haskell, Monad is a typeclass which requires (>>=) and return:

class Monad (m :: * -> *) where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

We see that

map f m = m >>= (return . f)

In literature, (>>=) is called “bind” and return is called “unit”.

In Scala, Monad is a trait which also requires the above two methods:

trait M[T] {
def flatMap[U](f: T => M[U]): M[U]

}
def unit[T](x: T): M[T]

All code presented in this talk may be different from the implementations in the

standard library.
Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 11 / 60

Instances

instance Monad [] where
return x = [x]
(>>=) = concatMap

instance Monad Maybe where
return = Just
Nothing >>= f = Nothing
Just x >>= f = f x

instance Monad (Either e) where
return = Right
Left l >>= _ = Left l
Right r >>= k = k r

Right means right!

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 12 / 60

Monad Laws

To qualify as a monad, a type has to satisfy three laws:

Left unit:

(return e >>= f) = f e

Right unit:

(m >>= return) = m

Associativity:

((m >>= f) >>= g) = m >>= (\x -> (f x >>= g))

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 13 / 60

Maybe is a Monad

Let’s check the monad laws for Maybe:

instance Monad Maybe where
return = Just
Nothing >>= f = Nothing
Just x >>= f = f x

Left unit: we can show

(Just x >>= f) = f x

by definition.

Right unit: need to show

(m >>= Just) = m

by case analysis:

(Just x >>= Just) = Just x
(Nothing >>= Just) = Nothing

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 14 / 60

Maybe is a Monad (Cont.)

Associativity: need to show

((m >>= f) >>= g) = m >>= (\x -> (f x >>= g))

by case analysis:

((Just x >>= f) >>= g) = f x >>= g
= Just x >>= (\x -> (f x >>= g))

((Nothing >>= f) >>= g) = Nothing >>= g = Nothing
= Nothing >>= (\x -> (f x >>= g))

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 15 / 60

Is Try a Monad?

abstract class Try[+T] {
def flatMap[U](f: T => Try[U]): Try[U] = this match {

case Success(x) =>
try f(x) catch { case NonFatal(ex) => Failure(ex) }

case fail: Failure => fail
}

}
case class Success[T](x: T) extends Try[T]
case class Failure(ex: Exception) extends Try[Nothing]

Q: Does Try follows the monad laws?

The left unit law fails:

Try(expr) flatMap f != f(expr)

The left-hand side will never raise a non-fatal exception, whereas the

right-hand side will raise any exception thrown by expr or f.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 16 / 60

Make Monad Laws More Reasonable

Alteratively, we could use the monad composition operator (aka Kleisli

composition)

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
(m >=> n) x = do { y <- m x

n y }

to rewrite the monad laws:

Left unit:

(return >=> f) = f

Right unit:

(f >=> return) = f

Associativity:

(f >=> g) >=> h = f >=> (g >=> h)

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 17 / 60

“Monadic” Pipes

We could extend the F# pipe function (|>) to support options (marking

failures) and lists, for fun:

let (?|>) (input: 't option) (next: 't -> 'v) : 'v option
let (?|>?) (input: 't option) (next: 't -> 'v option) : 'v option
let rec (||>) (inputs: 't list) (next: 't -> 'v) : 'v list
let rec (||>?) (inputs: 't list) (next: 't -> 'v option)

: 'v list option
let (?||>?) (inputs: 't list option) (next: 't -> 'v option)

: 'v list option
let (?||>) (inputs: 't list option) (next: 't -> 'v)

: 'v list option
let assert (errMsg: string) (test: 't -> bool) (input : 't option)

: 't option
let rec flatMapOption (f: 't -> 'v list option) (xs: 't list)

: 'v list option

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 18 / 60

Contents

1 Monads in Action

Motivation

Monad is an “Interface”

Monads for Probabilities

2 Monads, Categorically

Preliminary

Road to Monads

3 Beyond Monads: PL Today

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 19 / 60

Probabilistic Choice

Type Prob: probabilities, e.g. a real between 0 and 1.

Type Dist a: probability distributions.

Probabilistic choice:

choice :: Prob -> a -> a -> Dist a

choice p x y =

(
x y

p 1− p

)
Example: a biased coin:

biasedCoin :: Prob -> Dist Bool
biasedCoin p = choice p False True

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 20 / 60

Composition Problem

Given two functions that creates distributions:

f :: a -> Dist b
g :: b -> Dist c

The naive function composition g.f is ill-typed!

Suppose that Dist is a monad, we could use Kleisli composition

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)

and simply compose them in the following way:

g <=< f

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 21 / 60

Composing Distributions

f, g :: Int -> Dist Int
f x = choice 0.5 x (x + 1)
g x = choice 0.5 (x - 1) x

h = g <=< f

h x =

(
x − 1 x + 1 x

0.25 0.25 0.5

)

Remark: monad laws hold if we define the unit function as follows:

return :: a -> Dist a
return x = choice 0.5 x x

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 22 / 60

pGCL

A Probabilistic Guarded Command Language (pGCL), invented by

Kozen, Mclver and Morgan:

P ::= skip | abort | x := E | P1;P2
| if (G) P1 else P2 | while (G) P

| P1 [p] P2
| observe G

where P denotes a program, x denotes a variable, E denotes an

expression, G denotes a guard (condition), and p denotes a probability

value.

We could use Markov Chains to model the operational semantics for

pGCL.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 23 / 60

pGCL: Example

c := true;

i := 0;

while (c) {

i := i + 1;

c := false [p] c := true;

}

observe odd(i);

The feasible program runs have a probability∑
N>0

(1− p)2N · p =
1

2− p .

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 24 / 60

Monads are Everywhere

Monads here,

Monads there,

Monads are everywhere!

This poem is motivated by: Stefan Monnier, David Haguenauer. Singleton Types

Here, Singleton Types There, Singleton Types Everywhere. PLPV’10.
Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 25 / 60

Understanding Monad?

Q: How can I understand monad?

In fact, the question is problematic:

Which “monad” do you mean?

What makes you “understand” a new concept?

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 26 / 60

Contents

1 Monads in Action

Motivation

Monad is an “Interface”

Monads for Probabilities

2 Monads, Categorically

Preliminary

Road to Monads

3 Beyond Monads: PL Today

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 27 / 60

A Well-known Saying

A monad in C is just a monoid in the category of endofunctors
of C, with product replaced by composition of endofunctors and
unit set by the identity endofunctor.

– Saunders Mac Lane, Categories for the Working Mathematician

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 28 / 60

Contents

1 Monads in Action

Motivation

Monad is an “Interface”

Monads for Probabilities

2 Monads, Categorically

Preliminary

Road to Monads

3 Beyond Monads: PL Today

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 29 / 60

Category

Definition

A category C comprises C-objects (typically notated by A,B,C , . . .) and

C-arrows (typically notated by f , g, h, . . .), which are governed by the

following axioms:

(i) For each arrow f , there are unique associated objects src(f) and

tar(f), respectively the source and target of f , not necessarily

distinct. We write f : A→ B to denote f is an arrow with

src(f) = A and tar(f) = B.

(ii) For any two arrows f : A→ B and g : B → C s.t. tar(f) = src(g),
there exists an arrow g ◦ f : A→ C , namely the composition of f

with g.

(iii) For any object A, there exists an arrow 1A : A→ A called the

identity arrow of A.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 30 / 60

Category (Cont.)

Definition

(Cont.) Further, the arrow compositions are associated:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

for any f : A→ B, g : B → C , h : C → D, and identity arrows behave as

identities:

f ◦ 1A = f = 1B ◦ f

for any f : A→ B.

Theorem

Identity arrows on a given object are unique.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 31 / 60

Discrete Categories

0 has neither objects nor arrows.

1 has exactly one object with the identity arrow:

F

2 has two objects, the necessary identity arrows, plus one further

arrow between them:

F �

The above “graphs” are called diagrams. Informally, a diagram

represents some of the objects and arrows of a category as nodes

and edges, in a directed graph. The identity arrows can be omitted.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 32 / 60

More Categories

Grp: objects are groups, and arrows are group homomorphisms.

A monoid itself forms a category.

Pos: objects are partially-ordered collections, and arrows are

order-preserving maps.

A pre-ordered set (N,6) induces a category whose objects are the

elements of N, and A→ B forms an arrow if A 6 B,A,B ∈ N.

Vectk : objects are vector spaces over the field k , and arrows are

linear maps between the spaces.

Set: objects are all sets, and arrows are (total set) functions

between them.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 33 / 60

Lift the Arrows, First Attempt

Anything could be the objects of a category, even arrows, which derives

the concept of arrow category C→, when given any category C, with

objects are all C-arrows, and

arrows have the form f1 → f2 given two C→-objects f1 : X1 → Y1
and f2 : X2 → Y2, where there exists a pair of C-arrows (j , k) s.t.

k ◦ f1 = f2 ◦ j (∗)

Alteratively, the property (∗) could be expressed as “the following

diagram commutes:

X1 X2

Y1 Y2

j

f1 f2

k

”.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 34 / 60

Lift the Arrows, Over Again

Mathematicians not only study the structures, but also the

structures of structures.

A category is such a structure, and the arrows of the category

connects the objects inside.

It is natural to lift the arrow one level up, so that we can study the

arrows between two categories.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 35 / 60

Functors

Definition

Given two categories C and D, a (covariant) functor F : C → D
maps every C-object A into a D-object (i.e. FA), and

maps every C-arrow f : A→ B into a D-arrow (i.e. Ff : FA→ FB).

Further, it must

(i) respect identity, i.e. F1A = 1FA, and

(ii) respect composition, i.e. F (g ◦ f) = Fg ◦ Ff .

Examples:

The forgetful functor U : Grp→ Set sends groups to their

underlying carrier sets and sends group homorphisms to themselves

as set functions, forgetting about the group structure.

The powerset functor P : Set→ Set maps a set X to its powerset

P(X) and maps a set-function f : X → Y to the function which

sends Z ∈ P(X) to its f -image f [Z] = {f (x) | x ∈ Z} ∈ P(Y).
Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 36 / 60

Diagrams, Formally

Definition

Given categories C and J , we say that a functor D : J → C, is a diagram

(of shape J) in C.

Remarks:

A diagram usually contains a small part of the full category.

Although being partial, a diagram must be a category.

In a diagram, we could name the objects/arrows as we wish, as long

as they have a one-one correspondence to the original ones in the

category.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 37 / 60

Functors Compose

Given a category C, a functor F : C → C is called an endofunctor of

C.

There exists a trivial endofunctor which sends objects and arrows

alike to themselves, namely the identity functor 1C : C → C.

Like arrows, functors can also be composed:

Theorem

For any two functors F : C → D and G : D → E , there exists a functor
G ◦ F : C → E , or GF for short, namely the composition of G with F ,
which

maps a C-object A to an E-object (i.e. GFA), and
maps a C-arrow f : A→ B to an E-arrow (i.e. GFf : GFA→ GFB).

As a shorthand, we write F n (n > 1) for F n−1 ◦ F .

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 38 / 60

“Functors” in Haskell

class Functor (f :: * -> *) where
fmap :: (a -> b) -> f a -> f b

The signature of fmap looks like it maps a C-arrow f : A→ B into a

D-arrow Ff : FA→ FB.

Once there were some Haskell people said that Hask is a category,

with all Haskell types as objects, and function types as arrows. In

fact, Hask is even NOT a category, and is NOT Cartesian closed.3

However, some subset of Haskell where types do not have bottom

values might form a real category.

3https://wiki.haskell.org/Hask
Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 39 / 60

Categories of Categories

Trivially, there is a category of categories whose sole object is some

category C and whose sole arrow is the identity functor 1C.

As an extension, there is a category whose objects are all finite

categories, and whose arrows are all the functors between them.

Unsurprisingly, there is no universal category, i.e. a category U such

that every category is an object of U .

Q: How many categories can we “put into” a category?

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 40 / 60

A “Small Cat”

Definition

A category C is small iff it has overall only a “set’s worth” of arrows

– i.e. the arrows can be put into one-one correspondence with the

members of some set.

A category C is locally small iff for every pair of C objects (C ,D),
there is only a “set’s worth” of arrows from C and D.

Cat is the category whose objects are small categories and whose

arrows are the functors between them.

Cat∗ is the category whose objects are locally small categories and

whose arrows are the functors between them.

Q: Can we, again, lift functors one more level up?

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 41 / 60

Natural Transformation

Definition

Given two categories C and D. Let F ,G : C → D be two functors.

Suppose that for each C-object C there is a D-arrow αC : FC → GC .

Then α, the family of arrows αC , is a natural transformation between F

and G , written α : F ⇒ G , iff for every C-arrow f : A→ B,

αB ◦ Ff = Gf ◦ αA.

That is, the following diagram commutes:

FA FB

GA GB

Ff

αA αB

Gf

In sum, α sends an F -image of (some or all of) C to its G -image in a

way which, at least, preserves composition.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 42 / 60

Functor Categories

Definition

The functor category from a category C to a category D, denoted [C,D],
is the category whose objects are all the (covariant) functors F : C → D,

with the natural transformations between them as arrows.

Remarks:

Especially, [C, C] is called the endofunctor category of C.

The identity arrow of a [C,D]-object F is trivially the identity natural

transformation 1F : F ⇒ F , whose components 1FC are identity

arrows.

In a functor category, natural transformations are just normal

arrows, and thus we use the standard arrow notion → instead of ⇒.

In particular, we draw → in diagrams.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 43 / 60

Old Wine in New Bottles

Consider the functor category [2, C].
An object in this category is a functor F : 2→ C, where

FF = X and F� = Y for some C-object X and Y ;

F1F = 1X , F1� = 1Y , and F (F→ �) = f : X → Y .

There is a bijection between the objects of [2, C] and the arrows of C.

An arrow is a natural transformation between two functors

F ,G : 2→ C, involving any C-arrows j and k as components, which

makes the square commute:

FF F�

GF G�

F (F→�)

j k

G(F→�)

There is a bijection between the natural transformations and the

pairs of C-arrows.

In sum, [2, C] is (isomorphic to) the arrow category C→.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 44 / 60

Contents

1 Monads in Action

Motivation

Monad is an “Interface”

Monads for Probabilities

2 Monads, Categorically

Preliminary

Road to Monads

3 Beyond Monads: PL Today

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 45 / 60

Adjoint Functors

Definition

Given two categories C and D. Let F : C → D and G : D → C be two

functors. Then F is left adjoint to G and G is right adjoint to F , notated

F a G , iff

(i) there are natural transformations η : 1C ⇒ GF , called the unit, and

ε : FG ⇒ 1D called the counit, such that

(ii) for every C-object A, εFA ◦ FηA = 1FA, and for every D-object B,

GεB ◦ ηGB = 1GB .

Equivalently, (ii) means the following diagrams commutes:

FA FGFA

FA

FηA

1FA
εFA

GB GFGB

GB

ηGB

1GB
GεB

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 46 / 60

Putting Triangles Together

GB GFGB

GB

ηGB

1GB
GεB

FA FGFA

FA

FηA

1FA
εFA

In the above two triangles, let B = FA, and apply G to the right diagram

so that it also becomes a diagram on C. Now, we obtain the following

commutative diagram:

GFA GFGFA GFA

GFA

ηGFA

1GFA
GεFA

GFηA

1GFA

Example: U ` F where U : Grp→ Set is the forgetful functor, and

F : Set→ Grp is a functor which sends a set to the free group on that

set.
Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 47 / 60

Motivation

Q: Given any category C and endofunctor T : C → C. When is T = GF
for some adjoint functor F a G to and from another category D?

Suppose we have D and F a G , and T = GF . Then, we have a

natural transformation η : 1C ⇒ T .

For an arbitrary C-object C , we have εFC : FGFC → FC , and hence

GεFC : GFGFC → GFC , i.e. T 2C → TC , yielding a natural

transformation µ : T 2 ⇒ T .

In general, if T arises from an adjunction, then it should have such a

structure (T , η, µ).

What properties does (T , η, µ) have?

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 48 / 60

Motivation (Cont.)

Property

(Associativity) µ ◦ µT = µ ◦ Tµ.

Proof.

For any D-arrow f : X → Y , the diagram

FGX FGY

X Y

FGf

εX εY

f

commutes since

ε is a natural transformation. Let X = FGY , Y = FC (for every C-object C),

and f = εY , applying G therefore gives the commutative diagram:

GFGFGFC GFGFC

GFGFC GFC

GFGεFC

GεFGFC GεFC

GεFC

≡
T 2(TC) T 2C

T (TC) TC

TµC

µTC µC

µC

≡
T 3 T 2

T 2 T

Tµ

µT µ

µ

Recall that T = GF , µC = GεFC .

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 49 / 60

Motivation (Cont.)

Property

(Unit) µ ◦ ηT = 1T = µ ◦ Tη.

Proof.

The following diagram immediately commutes since F a G :

GFC GFGFC GFC

GFC

ηGFC

1GFC
GεFC

GFηC

1GFC
≡
T T 2 T

T

ηT

1T
µ

Tη

1T

Recall that T = GF , µC = GεFC .

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 50 / 60

Monad

Definition

A monad (T , η, µ) on a category C consists of an endofunctor

T : C → C, with natural transformations η : 1C ⇒ T called the unit, and

µ : T 2 ⇒ T called the multiplication, satisfying two axioms:

(Associativity) µ ◦ µT = µ ◦ Tµ, and

(Unit) µ ◦ ηT = 1T = µ ◦ Tη.

Proposition

Every adjoint functor pair F ` G with G : D → C, unit η : GF ⇒ 1C, and

counit ε : 1D ⇒ FG gives rise to a monad (T , η, µ) on C with
T = GF : C → C, and
µ = GεF : T 2 ⇒ T.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 51 / 60

The Well-known Saying, Again

A monad in C is just a monoid in the category of endofunctors
of C, with product replaced by composition of endofunctors and
unit set by the identity endofunctor.

– Saunders Mac Lane, Categories for the Working Mathematician

Given a monad (T , η, µ) on a category C.

Regard µ : T ◦ T ⇒ T as multiplication, the axiom (Associativity)

induces the associativity of the multiplication.

Regard 1T as the identity, the axiom (Unit) induces that η is a

witness to the existence of 1T .

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 52 / 60

Powerset Functor, Revisited

Consider the powerset functor P : Set→ Set.
Let ηX : X → P(X) be the singleton operation

ηX (x) = {x}.

Let µX : P(P(X))→ P(X) be the union operation

µX (S) =
⋃
S .

You can verify that (P, η, µ) is a monad.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 53 / 60

Category Theory for Everyone

The audience ... This could include a motivated high school

student who hasn’t seen calculus yet but has loved reading a

weird book on mathematical logic they found at the library. Or a

machine-learning researcher who wants to understand what vec-

tor spaces, design theory, and dynamical systems could possibly

have in common. Or a pure mathematician who wants to imagine

what sorts of applications their work might have. Or a recently-

retired programmer who’s always had an eerie feeling that cate-

gory theory is what they’ve been looking for to tie it all together,

but who’s found the usual books on the subject impenetrable.

– Brendan Fong, David I. Spivak. Seven Sketches in Composi-

tionality: An Invitation to Applied Category Theory.

Link: https://johncarlosbaez.wordpress.com/2018/03/26/

seven-sketches-in-compositionality/

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 54 / 60

https://johncarlosbaez.wordpress.com/2018/03/26/seven-sketches-in-compositionality/
https://johncarlosbaez.wordpress.com/2018/03/26/seven-sketches-in-compositionality/

Contents

1 Monads in Action

Motivation

Monad is an “Interface”

Monads for Probabilities

2 Monads, Categorically

Preliminary

Road to Monads

3 Beyond Monads: PL Today

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 55 / 60

Theory & Practice

Theory is when you know everything but nothing works. Practice

is when everything works but no one knows why. In our lab, theory

and practice are combined: nothing works and no one knows why.

– A proverb

Programming Languages (PL) is one of the most theoretical topic in

computer science, but

it is also one of the most practical field targeting at software and

system engineering.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 56 / 60

Goals of PL?

Working languages?

Faster programs?

Correctness and safety?

Automatic code generation?

etc.

I believe anything that could be expressed as a PL can be studied in the

field of PL.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 57 / 60

Future Topics

Dependent types, gradual typing, session types, game semantics

Dynamic languages

Program synthesis, automatic programming

Probabilistic programs, quantum programs

Categories

Big code, machine learning, linear algebra

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 58 / 60

References & Further Reading

Coursera: Functional Program Design in Scala. [link]

Richard Bird. Thinking Functionally with Haskell.

Scibior et al. Practical Probabilistic Programming with Monads.

Haskell’15.

Peter Smith. Category Theory: A Gentle Introduction. [link]

Steve Awodey. Category Theory.

PL Conferences: POPL, PLDI, ICFP, OOPSLA, ECOOP, CPP,

PEPM, etc.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 59 / 60

https://www.coursera.org/learn/progfun2/home
https://www.logicmatters.net/resources/pdfs/GentleIntro.pdf

Acknowledgement

I’d like to thank Feng Jiang et al. for the seminar/workshop on category

theory, held in Capital Normal University, in which we learned and

discussed a lot, and Joost-Pieter Katoen for his tutorial Principles of

Probabilistic Programming in SSFM’18. Also, I appreciate TUNA for

organizing Tunight, where speakers communicate weird topics with the

audiences, and it could be even better if have some tuna for dim sum.

Paul Zhu (School of Software) Maybe, it’s a Monad! April 20, 2019 60 / 60

	Monads in Action
	Motivation
	Monad is an ``Interface''
	Monads for Probabilities

	Monads, Categorically
	Preliminary
	Road to Monads

	Beyond Monads: PL Today

